This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

STUDIES IN THE HETEROCYCLIC SERIES. XIV. THE CHEMISTRY AND BIOLOGICAL ACTIVITY OF NEW AZA- AND THIA-PHENOTHIAZINES, AND RELATED DIBENZOTHIAZEPINES

Charles O. Okafor^a

^a Department of Chemistry, University of Nigeria, Nsukka, Nigeria

To cite this Article Okafor, Charles O.(1978) 'STUDIES IN THE HETEROCYCLIC SERIES. XIV. THE CHEMISTRY AND BIOLOGICAL ACTIVITY OF NEW AZA- AND THIA-PHENOTHIAZINES, AND RELATED DIBENZOTHIAZEPINES', Phosphorus, Sulfur, and Silicon and the Related Elements, 4: 1, 79-99

To link to this Article: DOI: 10.1080/03086647808079968 URL: http://dx.doi.org/10.1080/03086647808079968

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Review

STUDIES IN THE HETEROCYCLIC SERIES, XIV. THE CHEMISTRY AND BIOLOGICAL ACTIVITY OF NEW AZA-AND THIA-PHENOTHIAZINES, AND RELATED DIBENZOTHIAZEPINES

CHARLES O. OKAFOR[†]

Department of Chemistry, University of Nigeria, Nsukka, Nigeria

(Received April 20, 1977; in final form July 18, 1977)

Owing to increasing demand for phenothiazine compounds both in medicine and industry, novel rings in these series have been prepared and evaluated. The benzene rings have been replaced with pyrrole, pyrazole, pyridine, pyridazine, pyrimidine, pyrazine, thiazine and triazine rings or their combinations leading to twelve new polyaza- and thiaphenothiazines. Expansion of the central thiazine ring in these systems has also been carried out. This article therefore provides a survey of the chemistry and applications of new polyaza- and thiaphenothiazine systems and their related thiazepines and thiazocines.

1 INTRODUCTION

Interest in methylene blue, Lauth's violet and related phenothiazinoid dyes led Bernthsen¹ to investigate the preparation of the parent phenothiazine ring. His success in 1883 by the simple thionation of diphenylamine opened a new chapter in the chemistry of useful heterocyclic compounds as several phenothiazine derivatives were found to have a wide variety of very useful applications. In the past, they were mainly used in the dye industry where they constitute an important class of sulfur dyes. 2-3 Additionallly, they were found to be useful antioxidants 4-6 and have also shown several chemotherapeutic effects. 7 Notable among the early phenothiazine drugs are chlorpromazine (1),8 promethazine (phenergan) (2),9 and diethazine (diparcol) (3)¹0 which are used as tranquilizer, antihistamine and for the treatment of Parkinson's disease respectively. Several other derivatives which were prepared are also active as antiemetic, 8 antitumor, ¹¹¹ smooth muscle relaxant, ¹², ¹³ antithrombogenic ¹², ¹³

diuretic, 12,14 antihistaminic, 14 anthelmintic, 15 sedative, 15 antibacterial, psychopharmacological, 16 hypotensive 17 and insecticidal agents 18 to name a few. Thus, it can be rightly concluded that phenothiazine drugs play a very important part in chemotherapy.

[†] This article is dedicated as a tribute to Professor R. B. Woodward, the 1965 Nobel Prize-Winner in Chemistry and the author's former postdoctoral professor at Harvard, in remembrance of his kindness, encouragement and stimulating advice, and in recognition of his many outstanding accomplishments in the field of heterocyclic and natural products chemistry.

As one of the most useful heterocyclic rings so far known, extensive structural modifications of phenothiazine and its derivatives are still in progress in an attempt to improve their biological activities and to reduce the undesirable side effects. Early studies were concentrated on the synthesis of the side chain and the 10-alkylaminoalkyl derivatives. The chemistry and biological properties of phenothiazine have been reviewed many times¹⁹⁻²⁰ and more recently by Bodea and Silberg.21 Within the last three decades several structural modifications of the phenothiazine ring itself leading to aza- and thiaphenothiazines have also been made. In two previous articles, the chemistry and the applications of nine monoaza- and four diazaphenothiazines,²² two monothieno [1,4] benzothiazines and one dithieno[1,4] thiazine²³ were discussed. In these reports, the importance of these aza- and thia-analogs was also highlighted. The most useful compounds in these series are the derivatives of 1-azaphenothiazine²⁴⁻²⁵ followed by 1,2-diaza-,²⁶ 2,3-diaza-,²⁷ and then 2,4-diazaphenothiazines.²⁸ It is therefore not surprising to observe that in many new aza- and thiaphenothiazines, there is the retention of ring nitrogen in C-1, C-2 and C-3, C-1 and C-3, C-3 and C-4 or a variation of them resulting in diaza-, triaza-, and tetraazaphenothiazines as the case may be.

Within the last decade, thirteen new aza- and thiaphenothiazine rings and new products derived from them have been reported. These compounds have continued to show interesting chemotherapeutic effects which is probably responsible for their publications in classified literature and as patents. In this article, we wish to present a survey of the chemistry and applications of these new thia- and polyazaphenothiazines.

2 1,4-DIAZAPHENOTHIAZINE

In a systematic attempt to prepare all the six isomeric diazaphenothiazines, 1,2-diaza-, 2,3-diaza-, 3,4-diaza-, 1,3-diaza and 2,4-diazaphenothiazines were reported previously.²² The synthesis of the remaining 1,4-diazaphenothiazine (4. R = II) has now been achieved.

phenothiazine (4, R = II) has now been achieved.

This was accomplished $^{29-30}$ by condensing an alkaline mixture of 2-aminothiophenol (5) with 2,3-dichloropyrazine (6). Oxidation of the resulting 1,4-diazaphenothiazines (4) with 35% H_2O_2 gave the corresponding 5-dioxides.

If, on the other hand, an ethanolic sodium hydroxide solution of 3-amino-2-mercaptopyrazine $(7)^{31-33}$ is treated with 2-halocyclohexane-1,3-dione (8), 6,7,8,9-tetrahydro-1,4-diazaphenothiazin-6-one (9) was obtained.³⁴

Alkylation of these 1,4-diazaphenothiazines with benzyl bromide, dimethylaminopropyl chloride and morpholinopropyl chloride in the presence of strong base afforded the corresponding 10-alkyl-6,7,8,9-tetra-hydro-1,4-diazaphenothiazines.

At a concentration of 100 ppm 10-(3-dimethyl-aminopropyl)-6,7,8,9-tetrahydro-1,4-diazaphenothiazine gave 100% control of *Staphylococcus aureus*, *Candida albicans* among others. 10-Benzyl-2,3-dichloro-1,4-diazaphenothiazine-5-dioxide controlled the growth of *Trichophyton mentagrophytes* at 1-10 ppm while at a concentration of 900 ppm it controlled the growth of *Candida albicans*.

3 1-AZA-4-THIAPHENOTHIAZINE

During a study of the reaction of bis (o-aminophenyl) disulfide (10) with various ketones in the presence and absence of air, Carelli et al. 35 reacted this disulfide, 10, with cyclohexanone in the absence of air. Three major products were obtained. One of them was identified as spiro [benzothiazoline-2,1'-cyclohexane] (11). 36 The remaining two products 12 and 13 had the same molecular formula of $C_{18}H_{18}N_2S_2$ and melted at $163-164^\circ$ and $201-202^\circ$ respectively. They were subsequently

identified as 5a,11a-butano [1,4]benzothiazino [2,3-b] [1,4]benzothiazine (12) and 6,7,8,8a-tetrahydro-5aH-[1,4]benzothiazino [2,3-k] phenothiazine (13) from a study of their infrared and nmr spectra.

Structure 13 was confirmed by the isolation of an identical compound from the reaction of 2-aminothiophenol (5) with 2,6-dibromocyclohexanone (15).

It will be noted that the reaction of the disulfide, 10, with cyclohexanone in the absence of air did not yield the anticipated 1,2,3,4-tetrahydrophenothiazine (16). When the reaction was however carried out in the presence of atmospheric oxygen, an oxygen containing product, 17, of molecular formula $C_{12}H_{13}NOS$ melting

at 90-92° was reported together with the compounds, 11, 12 and 13. Infrared evidence showed that the oxygen in compound 17 is present in the carbonyl group. Raney-Nickel desulfurization yielded 2-anilinocyclohexanone. These reactions together with the nmr spectrum indicate that compound 17 is spiro [benzothiazoline-2,1'-cyclohexan-2'-one].

10 +
$$\frac{\text{Air}}{\text{H}^+}$$

H O

N

17

It was deduced from these and other reactions^{38–39} that spirobenzothiazolinecyclohexanones often arise from autoxidation of tetrahydrophenothiazines. This observation suggests that the absence of the expected tetrahydrophenothiazine when the disulfide 10 was reacted with cyclohexanone with the exclusion of air is due to further transformation of this intermediate. It was therefore considered necessary to prepare this compound (16)³⁵ which had not been synthesized previously.

The preparation was achieved by reacting 2-aminothiophenol (5) with 2-bromocyclohexanone (18) in an inert atmosphere. 1,2,3,4a-Tetrahydro-3H-phenothiazine hydrobromide (19), which was obtained, was converted to 1,2,3,4-tetrahydrophenothiazine (16) by treatment with a base under nitrogen atmosphere followed by vacuum distillation and crystallization.

$$\begin{array}{c|c}
NH_2 & & & & \\
SH & & & & \\
\hline
SH & & & & \\
\hline
SH & & & & \\
\hline
Br^{\Theta} & & & & \\
\hline
MO^{\Theta} & & & & \\
\hline
N_2 Atm. & & & \\
\hline
N & & & & \\
\hline
19 & & & & \\
\hline
16 & & & \\
\end{array}$$

The structure of compound (16) which melted at 55-60° (bp. 133-135/0.01 mm), was established by a study of its infrared and nmr spectra.

Compound 16³⁵ and related compounds³⁹⁻⁴⁰ were shown to have enaminic character and this property was used to rationalize its disproportionation to a mixture of 1,2,3,4,4a,10a-hexahydrophenothiazine (20) and phenothiazine. This enaminic property was also used to establish the mechanism of transformation of compounds 10 and 14 to 12 and 13.

$$16 \xrightarrow{\text{H}^{\textcircled{\oplus}}} \begin{array}{c} \text{H} \\ \text{N} \\ \text{S} \end{array} + \begin{array}{c} \text{H} \\ \text{N} \\ \text{S} \end{array}$$

The conversion of the disulfide (10) and cyclohexanone (14) mixture to compounds 12 and 13 was shown to proceed via the 1,2,3,4-tetrahydrophenothiazine intermediate (16). No reaction was however observed if this intermediate was treated with 2-aminophenol but when compound 16 was made to react with 10 under the

12

original reaction conditions (acid medium and absence of air) the reaction proceeded smoothly and both compounds 12 and 13 were obtained.

The formation of compound 12 was therefore explained by a mechanism involving the heterolytic cleavage of the disulfide bond by an attack of the β -enaminic carbonion (structure 21). This was followed by intramolecular cyclization by the addition of the amino group of the cleaved disulfide to the iminium cation of the tetrahydrophenothiazine intermediate.

By a similar mechanism the formation of compound 13 would imply the partial existence of 16 in the tautomeric form 22 which was not observed in the nmr spectrum.

Having established the intermediacy of 1,2,3,4-tetrahydrophenothiazine in the formation of 1-aza-4-thiaphenothiazines of type 12, it will be interesting to react it with disulfides of o-aminopyridine, o-aminopyridazine, o-aminopyrimidine and o-aminopyrazine to obtain additional aza-, and diaza- variations of 1-aza-4-thiaphenothiazines of types 24.

4 1,3,6-TRIAZAPHENOTHIAZINE

All the earlier reports on the aza analogs of phenothiazine were concerned with the chemistry and biological properties of only the monoaza- and diazaphenothiazines—there was no report whatsoever on any of the twenty-four isomeric triazaphenothiazine systems. In 1973, however, we ventured into the synthesis of the first set of compounds in these series and successfully achieved the preparation of 1,3,6-triazaphenothiazine (25) derivatives thereby opening this new chapter on phenothiazine chemistry.⁴¹

These compounds were obtained in yields varying from 11% to 95% by acid catalysed condensation of 3-aminopyridin-2(1H)-thiones (26)⁴² with 4,5-dihalogenopyrimidines (27).⁴³

٧H2

Br

$$R_1$$
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_3
 R_3

Optimum yields were obtained in dilute acid media in which the ring nitrogens of pyridine and pyrimidine were preferentially protonated. Quarternization of these ring nitrogens would enhance the nucleophilicity of 3-NH₂ group (structure 26) and the susceptibility of C-4 in structure 27 to nucleophilic attack. In most cases, cyclization proceeded smoothly without rearrangement.

Similar reactions were carried out using 4-halogenopyrimidines in which the 5-position is unsubstituted. The lack of a reactive group in C-5 would therefore prevent cyclization. It was found that in all cases the corresponding diarylamines referred to as "open" analogs were obtained in satisfactory yields. Several derivatives of these "open" and "closed" 1,3,6-triazaphenothiazines were prepared and characterized.

These 1,3,6-triazaphenothiazines were tested in mice and rats for their effects on the central nervous system. The test results show that the derivatives studied have appreciable CNS-depressant activities. All investigational compounds had antipyretic activity. They decreased body temperature in some cases by as much as 1.9° compared to 0.8° in chlorpromazine. In tests for anticonvulsant activity, only 2,4-diamino-7-methoxy-1,3,6-triazaphenothiazine prolonged significantly the onset of convulsion due to strychnine thereby exhibiting anticonvulsant activity. Only 2,4-dichloro-7-methoxy-1,3,6-triazaphenothiazine had a slight influence on pentylenetetrazole induced convulsions. Some correlations based on structure-activity relationships were also made.⁴⁴

5 1,3,4-TRIAZAPHENOTHIAZINE

In addition to the reports on 1,3,6-triazaphenothiazines, Kaji and his co-workers⁴⁵⁻⁴⁷ have also reported the synthesis of another triazaphenothiazine ring system. When 6-halogeno-1,3,4-triazine-3,5(2H,4H)-dione (38) was refluxed in an alkaline solution of 2-aminothiophenol (5), 6-(2-aminophenylthio)-1,3,4-triazine-3,5(2H,4H)-dione (39) was obtained. Cyclization of the diaryl sulfide, 39, was achieved by refluxing in acetic acid for 1.5 hours. This led to 92% yield of 1,3,4-triazaphenothiazine-2(1H)-one (40).

Compound 40 was converted through the tautomer 41 to the chloroderivative (42) by the action of phosphorus oxychloride and phosphorus pentachloride in the presence of diethylaniline.⁴⁷

A few other side chain derivatives particularly the 3and 10- aralkyl derivatives were also reported but no reports on the biological properties have however been made so far.

6 1,3,9-TRIAZAPHENOTHIAZINE

The third isomeric triazaphenothiazine⁴⁸ was recently reported by acid catalysed condensation of 3-mercapto-2-aminopyridine (43) with 4,5-dihalogenopyrimidine (27). The precursor o-aminomercaptopyridine (43) was obtained by Kaufmann's thiocyanation⁴⁹ of 2-amino-6-methylpyridine followed by base catalysed hydrolysis of the resulting 3-thiocyanato derivative⁴² and acidification. Thus when the o-aminomercaptopyridine 43 was treated with 5-bromo-4-chloro-2,6-dimethoxypyrimidine (27, $R_2 = R_3 = OCH_3$) in dilute sulfuric acid, 68% yield of 2,4-dimethoxy-8-methyl-1,3,9-triazaphenothiazine, 46, was isolated. Similar products were obtained if compound 27 were replaced with 4-chloro-5-nitropyrimidines.

The "open" analogs were also prepared by similar acid catalysed reactions, using chloropyrimidines in which the C-5 position is unsubstituted. The fact that

$$CH_{3} \xrightarrow{N} NH_{2} \xrightarrow{CH_{3}} NH_{2}$$

$$+ CH_{3} \xrightarrow{N} NH_{2}$$

$$+ CH_$$

such reactions with 2-amino-3-mercaptopyridine gave in all cases, the corresponding 6-(3-mercapto-6-methyl-2-pyridyl)pyrimidylamines (47) is an evidence for the assigned structures.⁵⁰

In tests with mice and rats, these derivatives of 1,3,9-triazaphenothiazine showed CNS-depressant activities in doses of 1-4 mg/kg i.p. They also showed antipyretic activities. None of the compounds, when protected against strychnine and maximal electroshock, induced seizures, however 2-amino-4-chloro-8-methyl-1,3,9-triazaphenothiazine prolonged significantly the onset due to maximal electroshock thus showing an appreciable anticonvulsant activity in mice.⁴⁴

7 2,3,6,7-TETRAAZAPHENOTHIAZINE

Replacement of the benzene rings in phenothiazine with pyridazine leading to tetraazaphenothiazines was recently accomplished by Wise and Castle⁵¹ who successfully

synthesized five out of thirty-five possible isomeric tetraazaphenothiazine rings. This work can be regarded as the greatest single contribution to the chemistry of azaphenothiazines in modern times.

In these reactions, 4-amino-5-chloropyridazine $(48)^{52}$ was converted to 4-aminopyridazine-5-thiol (49) in 58% yield by heating with sodium hydrosulfide under pressure. This product was then treated with 3,4,6-trichloropyridazine⁵³⁻⁵⁴ (50) at -10° to -5° in ethanolic sodium hydroxide. The resulting dipyridazinyl sulfide (51) was refluxed in the presence of glacial acetic acid and gave 8-chloro-2,3,6,7-tetraazaphenothiazine (52), mp. 234-235°.

The conversion of 4-(5'-aminopyridazinyl-4'-thio)-3,6-dichloropyridazine (51) to the tetraazaphenothiazine, 52, was rationalized as proceeding via Smiles rearrangement followed by cyclization. Such acid catalysed Smiles

rearrangement reactions have been well established.²² The same product (52) was also obtained by heating the starting materials, 49 and 50, at 50° for 3 hours in ethanolic KOH.

In order to establish the structure of this tetraaza-phenothiazine, (52), the synthesis of the parent compound was attempted. 4,5-Dimethoxypyridazine (54)⁵⁵ was converted to pyridazine-4,5-diol (55) in 89% yield by refluxing in 48% hydrobromic acid. Chlorination with phosphorus oxychloride gave the 4,5-dichloropyridazine, 56, in 61% yield. The second reactant, 5-aminopyridazin-6(1H)-thione (57) was obtained in 62% yield by reacting 5-aminopyridazine-6(1H)-one (58)⁵⁶ with phosphorus pentasulfide in pyridine.

By stirring a mixture of compounds 56 and 57 at room temperature in the presence of alcoholic potassium hydroxide, 2,3,6,7-tetraazaphenothiazine, 59, was isolated in 55% yield. It is a white compound melting at 184-185°.

The infrared spectrum showed an NH absorption at 3380-3335 cm⁻¹. The ultraviolet spectrum had a maximum absorption band at 251 nm characteristic of phenothiazinoid systems. 41,50 Its nmr signals were rationalized as follows:

$$\delta 9.0 (s, b)$$
 $\delta 7.24 (d)$ H $\delta 9.04 (s)$
 $\delta 8.17 (d)$ N N N
 $\delta 8.75 (s)$
 $\delta 9.0 (s, b)$
 $\delta 8.75 (s)$
 $\delta 8.75 (s)$

Compound 59 is the only possible product of molecular formula $C_8H_5N_5S$ obtainable from the base-catalysed reaction of compounds 56 and 57 irrespective of whether the reaction takes place with or without rearrangement. Dechlorination of compound 52 with palladized charcoal also led to the parent compound 59 in 55% yield. This reaction shows that compound 52 is a derivative of the parent ring, 59. Thus compound 52 is 8-chloro-2,3,6,7-tetraazaphenothiazine. Condensation with sodium methoxide in methanol under pressure led to 53% yield of the 8-methoxyderivative.

10-Alkylation of these 2,3,6,7-tetraazaphenothiazines was accomplished by reaction with sodamide followed by the addition of 3-diethylaminopropyl, 2-dimethylaminoethyl, 2-diethylaminoethyl and 2-morpholinoethyl halides. Pharmacological evaluation of these potential psychopharmacological agents is yet to be carried out.

8 1,2,7,8-TETRAAZAPHENOTHIAZINE

It was also reported by Wise and Castle that if 4-(5'-aminopyridazinyl-4'-thio)-3,6-dichloropyridazine (51), obtained by base catalysed condensation of 49 and 50 were treated with concentrated hydrochloric acid, a chlorotetraazaphenothiazine⁵¹ melting at 256-257° was obtained. Two structures are possible namely (i) structure 52 obtained via Smiles rearrangement and (ii) structure 60 obtained by direct cyclization.

As the properties of the isolated product are different from those of compound 52 obtained by refluxing 51 in glacial acetic acid, it was therefore identified as 3-chloro-1,2,7,8-tetraazaphenothiazine (60).

The 3-methoxyderivative was obtained in 64% yield by reaction with methanolic sodium methoxide under pressure. The pharmacological properties of these derivatives have not been reported yet.

$$\begin{array}{c|c}
N & NH_2 & Cl & N_N & \frac{\text{conc.}}{\text{HCl}} \\
\hline
S & & & & & \\
\hline
S & & & & \\
\hline
S & & & & \\
\hline
M & & & & \\
\hline
M & & & & \\
N & & & & \\
\hline
M & & & & \\
M & & & & \\
\hline
M & & & & \\
M & & & & \\
\hline
M & & & & \\
M & & & \\
\hline
M & & & & \\$$

9 2,3,7,8-TETRAAZAPHENOTHIAZINE

By using various isomers of o-aminomercaptopyridazine and dichloropyridazine, other dipyridazino [1,4] thiazines were obtained in good yields. A derivative (61) of 2,3,7,8-tetraazaphenothiazine was obtained by basecatalysed reaction of compound 49 with 4,5-dichloropyridazin-6[1H]-one (62) at 0° for 24 hours. In order to decide whether the product of this reaction is 2,3,7,8-tetraazaphenothiazin-1[2H]-one (63) or 2,3,7,8-tetraazaphenothiazine-4(3H)-one (64) further experimentation was deemed necessary.

Compound 63 was prepared unequivocally by converting 5-amino-4-chloropyridazin-6(1H)-one (65)⁵⁷ to 5-amino-4-thiopyridazin-6(1H)-one (66) by the action of sodium hydrosulfide under pressure at 160°. This was followed by the action of compound 56 in ethanolic potassium hydroxide at room temperature. The tetra-azaphenothiazinone 63 thus obtained is the only possible product of this reaction owing to the symmetry of compound 56. This product possessed properties different from those of compound 61. Thus compound 61 was assigned structure 64.

Confirmatory evidence of structure was obtained by unequivocal synthesis from a mixture of compound 56 and 4-amino-5-thiopyridazin-1 H-one which was obtained by condensation of 4-amino-5-chloropyridazin-6[1H]-one with sodium hydrosulfide under pressure. Again the only product of this reaction had both physical and chemical properties which were identical with those of compound 61 whose structure is therefore confirmed as 64. The reactions leading to this

product was rationalized as proceeding via the formation of the diaryl sulfide, 69, followed by Smiles rearrangement to the diarylamine 70 and base catalysed cyclization yielding the tetraazaphenothiazine, 64. The exceptional reactivity of the 4-halogen atom can be rationalized if it is regarded as an activated vinyl chloride such as those described by Benson and Pohland.⁵⁸

The unsubstituted 2,3,7,8-tetraazaphenothiazine (71) was obtained in 66% yield by treating compound 49 with 56 in the presence of alcoholic KOH at room temperature.

It is colorless solid melting at 167-168°. The ir spectrum had an NH absorption at 3380-3350 cm⁻¹. Owing to the equivalence of C-1 and C-9 positions on one hand and C-4 and C-6 positions on the other hand there are three peaks in the nmr spectrum interpreted as shown in the structural diagram.

$$\delta 9.20 (b, s)$$

H $\delta 9.26 (s)$

N

S $\delta 9.03 (s)$
 $s = \text{singlet}, b = \text{broad}.$

Many derivatives of this ring including the 10-diakylaminoalkyl derivatives of pharmacological interest were also prepared.

10 3,4,6,7-TETRAAZAPHENOTHIAZINE

When a mixture of 5-aminopyridazin-6[1H]-thione (72) and 3,4,6-trichloropyridazine (50) was stirred at -10° for 24 hours, a 31% yield of 4-(4'-aminopyridazinyl-3'-thio)-3,6-dichloropyridazine (73) was obtained.⁵¹

symmetric nature of the molecule along the central ring nitrogen-sulfur axis.

s = singlet; b = broad

The action of acetic acid on this dipyridazinyl sulfide at 90° for 3.5 hours caused rearrangement to the diary-lamine intermediate followed by cyclization. 2-Chloro-3,4,6,7-tetraazaphenothiazine (74) melting at 183–184° was obtained in 47% yield.⁵¹

The parent compound, 3,4,6,7-tetraazaphenothiazine (75) was obtained in 60% yield by stirring, for 24 hours, an alcoholic mixture of compound 72 and 3,4-dichloropyridazine⁵⁹ (76) in the presence of potassium hydroxide. It is a crystalline compound melting at 179-180°. Structural assignment was based on the similarity of the uv spectrum with that of compound 74. Further evidence of structure was provided by the nmr spectrum which showed only three groups of peaks due to the

The alternative structure 77 would be expected to give a more complex spectrum due to lack of symmetry The similarity of the uv spectrum of this compound with that of compound 74 is an evidence for the structure of 74 and for the postulated rearrangement of the dipyridazinyl sulfide 73.

No reprot has, so far, been made on the biological properties of these 3,4,6,7-tetraazaphenothiazine.

11. 1,2,6,7-TETRAAZAPHENOTHIAZINE

Utilizing the case of cyclization of suitably substituted diaryl sulfides, Wise and Castle heated the dipyridazinyl sulfide 73 in concentrated hydrochloric acid at 90° for

4 hours. A product different from 2-chloro-3,4,6,7-tetraazaphenothizaine (74) was isolated in 61% yield. It melted at 256-258° and the uv spectrum is different from those of compounds 74 and 75. The compound was therefore identified as 3-chloro-1,2,6,7-tetraazaphenothiazine (78).⁵¹

$$\begin{array}{c|c}
NH_2 & Cl & N_N & \text{conc.} \\
N & S & Cl & HCl & HC$$

The pharmacological evaluation of this compound has not been reported yet.

12 INDOLOBENZO[1,4] THIAZINES

While studying the deoxygenation of indolyl o-nitrophenyl sulfides with tricthyl phosphite, a variety of products which include novel phenothiazine-type compounds was reported by Jackson, Johnston and Shannon. When the sulfide 79 was mixed with triethyl phosphite under reflux for 3 hours in a nitrogen atomsphere, the dihydrobenzothiazepine 80 (mp 186°) was produced in 34% yield. Heating this product above its melting point led to the loss of hydrogen sulfide and the formation of the indoloquinoline, 81. Compound 81 is identical with the product of methylation of the known indolo [3,2-b] quinoline, 82.

On the other hand if these reactions were repeated using the isomeric 2-indolyl o-nitrophenyl sulfide, 83, the indolobenzothiazine 84 was reported in 70% yield. Evidence for the assigned structure 84 was provided by an unequivocal synthesis starting with the 2-indolone, 85. Condensation of compound 85 with o-nitrobenzene sulfenyl chloride (86) in THF led to the diaryl sulfide 87. Reduction of the nitro-group with sodium dithionite (Na₂S₂O₄) in aqueous ethanol afforded the o-amino derivative, 88, which cyclized by intramolecular condensation in p-toluene sulphonic acid to yield the indolobenzothiazine 84. This compound had identical properties with the phosphite deoxygenation product of 83.

Phosphite deoxygenation of 3-(N-methylindolyl) o-nitrophenyl sulfide, (89) under similar conditions afforded the spiro-oxindale, 90, in 15% yield. On the

other hand, if this reaction is worked up as rapidly as possible a solid mixture of compound 90 and another compound 91 which is unstable in air was produced. Compound 91 was identified as an isomeric indolobenzothiazine. The conversion of 91 to 90 in the presence of atmospheric oxygen was quite rapid but could be followed spectroscopically in the uv cell where the change of maximum absorption from 265 nm as in 91 to 256 nm and the appearance of another maximum at 310 nm as in compound 90 could be measured. The half life of compound 91 was reported to be approximately 3 minutes. The instability 62 of 2,3-disubstituted indoles to atmospheric oxygen is not

84

91

new and the transformation of the indolobenzothiazine 91 to the spiro-oxindole 90 has been rationalized as proceeding via an attack of oxygen at the 2-position of the indole ring leading to 2-hydroxylation. An intramolecular rearrangement of the intermediate (93) led to the stable spiro-compound 90. Desulfurization of 91 with copper bronze⁶³ in 1,2,4-trichlorobenzene gave trace amounts of compound 94. This is an evidence for the assigned structure.

Thus phosphite deoxygenation of indolyl o-nitro-phenyl sulfides is a successful route to indolobenzo-thiazines, the instability of some of these rings not-withstanding. The pharmacological evaluation of these new phenothiazine compounds has not been reported.

13 PYRAZOLO[4,5-b] [1,4] BENZOTHIAZINE

It was found by Kaki and Suzuki that 2-phenyl-2,3-diazaphenothiazin-1(2H)-one (95)⁶⁴ could be converted to the spiro-compound spiro(1-phenyl-4(5H)-pyrazolone-3,2-benzothiazoline) (96) by the action of sodium

in ethanol followed by chromatography (SiO_2). Borohydride reduction of this spiro-compound in THF followed by treatment with 80% acetic acid gave 9-acetyl-1-phenylpyrazolo [4,5-b] [1,4] benzothiazine (97).⁶⁵

Several derivatives of this pyrazolobenzothiazine ring were prepared and tested in laboratory animals. Most of them were found to have psychotropic activity in animals.⁶⁵

14 DIBENZO[1,4]THIAZEPINES AND RELATED COMPOUNDS

The annular analogs of phenothiazine discussed thus far are those leading to modifications of the dibenzo groups either by incorporation of annular nitrogen and sulfur atoms or by replacing them with other heterocycles. Further modifications can however be made by expansion of the central 1,4-thiazine ring while at the same time retaining the central ring heteroatoms in 1,4-positions. The latter modified structures will lead to dibenzo [1,4] thiazepine and dibenzo [1,4] thiazocine structures and their related aza- and thia- analogs.

A large number of these heterocyclic rings have now been synthesized and examined for their pharmacological properties. Owing to their high biological activities, interest in these modified phenothiazine heterocycles has grown rapidly and is posing a big challenge to the traditional phenothiazine chemistry. Because of the structural relationship between these compounds and phenothiazine, we shall include in this report the chemistry and biological effects of the novel rings in these series particularly their aza- and thia- analogs.

15 DIBENZO [b,f] [1,4] THIAZEPINES

1. Chlorodibenzo [b,f] [1,4] thiazepine (98) was prepared in 50% yield by condensing 2-aminothiophenol (5) with 2,6-dichlorobenzaldehyde in fused 2-methyl-

imidazole.⁶⁶ Compound 98 was transformed into the 10-methyl-derivative and isolated as the tetrafluoroborate salt by the action of trimethyl orthoformate (99) in the presence of boron trifluoride at room temperature. When treated with sodium cyanide in dimethyl sulfoxide at room temperature, compound 100 was converted to 11-cyano-10-methyl-10,11-dihydrodibenzo [b,f] [1,4]-thiazepine (101) in 70% yield.

$$100 \xrightarrow{\text{NaCN}} 000 \xrightarrow{\text{DMSO}} 101$$

By ring-closure dehydration of the amides 1-piper-azinecarboxylic acid o-phenylthioanilide (102) using phosphorus oxychloride, good yields of 11-piperazinyl-dibenzo [b,f] [1,4] thiazepines (103) were obtained.⁶⁷ Cyclization of 4-(2-pyridylmethyl)-1-piperazinecarboxylic acid o-phenylsulfonylanilide (104) in the presence of orthophosphoric acid and phosphorus oxychloride led

to the corresponding 5-dioxide 105.68 Beckmann rearrangement of 10-(hydroxyimino)thioxanthene 5-dioxide led to dibenzo [b,f][1,4]thiazepin-10-one-5,5-dioxide (106) in satisfactory yields. Michael addi-

tion of acrylonitrile to compound 106 followed by hydrolysis of the resulting 10-(2-cyanoethyl)-derivative and cyclization with phosphorus oxychloride gave the dibenzopyridothiazepinedione-5-dioxide (107) which was converted to 1,2,3,4-tetrahydrodibenzo-[c,k,l] [1,4]-diazepino [2,1-c] [1,4] thiazepine-3,13-dione-8,8-dioxide (108)⁶⁹ by the action of sodium azide in orthophosphoric acid. Several 1-, 2-, 3-, 4-, 7-, 8-, 10- and 11-substituted dibenzo [b,f] [1,4] thiazepines and their 5-dioxides were also reported.⁷⁰⁻⁸⁰

The biological properties of these compounds were extensively investigated in birds and mammals by several workers. Strong antihistaminic, ⁸⁰ antidepressant, ^{72,75,80,81} antiasthma, ⁸⁰ antiallergic, ⁸ antiphlogistic ⁶⁷ analgesic, ^{68,77,78} cholesterol depressant, ⁶⁸ antiinflammatory, ^{68,77} antiartesclerotic, ⁶⁸ sedative, ^{71,75} neuroleptic, ⁷¹ neurotropic antidepressant, ⁷¹ antiemetic, ^{71,75} anxiolytic, ⁷² tranquilizing, ⁷⁵ hypochesteremic, ^{71,78} psychotropic, ⁷⁷ bactericidal, ⁷⁹ and fungicidal ⁷⁹ activities were exhibited by these derivatives. In the 10-aminoalkylcarboxylate derivatives which showed CNS activities, the LD₅₀ in mice on i.p. or oral application is 75–500 mg/kg or 300–2000 mg/kg respectively. ⁸²

16 DIBENZ[b,e][1,4]THIAZEPINE

The related dibenz [b,e] [1,4] thiazepines (109) were prepared by methods similar to those described in the preceding section. Several derivatives which were prepared were tested in laboratory animals in order to determine their pharmacological usefulness. Reports show that these dibenzthiazepines are useful microbicides, ⁸³ surface disinfectants, ⁸⁴ central nervous system stimulants, ⁸⁴ muscle relaxants, ⁸⁴ tranquilizers, ^{85–87} sedatives, ⁸⁵ antidepressants, ^{86,87} antiarrhythmic and antibacterial agents. ⁸⁸ At 1×10^{-3} – 10^{-1} % solutions, some 10-alkylamino derivatives completely eliminated *S. aureus* and T. *Mentagrophytes*. ⁸⁸ In doses varying from 20–200 mg per day, certain N-alkylaminoalkyl-derivatives are sedatives and hypotensive agents. ⁸⁹

17 BENZOPYRANO-, PYRIMIDINO- AND THI-AZINO[1,4]THIAZEPINES

Systems in which one of the benzo groups is replaced by pyridine (110)⁹⁰ and benzopyran⁹¹ rings (111) have also

$$\begin{array}{c|c}
R \\
N \\
N \\
S \\
110
\end{array}$$

$$\begin{array}{c|c}
R \\
N \\
N \\
S \\
111
\end{array}$$

been reported. Derivatives of compound 111 showed strong sedative and muscle relaxant activities.⁹¹

By condensing 5-acyl-4-chloro-6-methyl-pyrimidines (112) with 2-aminothiophenol (5) good yields of 1-methyl-11-alkylpyrimido [4,5-b][1,5]benzothiazepines 113 were obtained.⁹²

2-Aminothiophenol (5) also reacted with 3-chloro-2-formyl-6-phenyl-5,6-dihydro-4H-1,4-thiazine (114) in the presence of 2-methylimidazole and gave 72% yield of 2-phenyl-2,3-dihydro-1,4-thiazino [3,2-b] [1,5] benzo-thiazepine (115) hydrochloride.⁶⁶

18 THIENOBENZOTHIAZEPINES

Replacement of one benzo group in dibenzo [b,f][1,4]-thiazepine with thiophen ring leading to thienobenzo-thiazepines has also been accomplished. This was

achieved by refluxing a mixture of o-(2-thienylthio)-phenyl isocyanate (116) for two hours with 1-(2-thenyl)-piperazine (117) in benzene resulting in a 90% yield of 4-(2-thenyl)-2'-(2-thienylthio)-1-piperazinecarboxanilide (118). Cyclization was achieved by refluxing for 15 hours with phosphorus oxychloride. The thienobenzothiazepine derivative, 119, was isolated as the hydrated hydrochloride salt. 93 Alternatively, these compounds were obtained by ring closure reactions of the diaryl sulfides, 120, with mercuric acetate in xylene. 94

Thienobenzothiazepines of this class were found to be useful agents for the suppression of spontaneous motility and fighting behaviour and for the potentiation of reserpine and narcosis. In tests with mice, the ED_{50} of compound 121 (n=2,R=2-pyridyl) was 0.16–0.31 mg/kg for the suppression of spontaneous motility and 10–20 mg/kg for the suppression of fighting behaviour. Ptosis induced by reserpine was increased by 30% at a dose of 0.04–0.08 mg/kg and narcosis by 50% using 0.63 mg/kg of this compound. ⁹³ Many other derivatives which were prepared showed strong sedative, ⁹⁵ analgesic, ⁹⁵ antiinflammatory, ⁹⁵ anticholesterol and antidiabetes activities. ⁹⁵

$$N-(CH_2)_nR$$

$$O=C$$

$$S$$

$$S$$

$$(CH_2)_nR$$

$$N$$

$$N$$

$$N$$

$$S$$

$$S$$

$$S$$

$$S$$

$$121$$

The isomeric thienobenzothiazepines (122)⁹⁶ were obtained by cyclizing the 2-thienylphenyl sulfides 123.

Cyclization was also accomplished by intra-molecular rearrangement of a stirred solution of the diaryl isocyanate, 124, in tetrachloroethane at -10° to -5° for 24 hours in the presence of anhydrous aluminium trichloride.

In tests with laboratory animals, derivatives of these thienobenzothiazepinones (122) were found to be useful analgesics, 97, 98 sedatives 97, 98 and antiinflammatory agents. 97, 98

The third isomeric thienobenzothiazepine was obtained by methods similar to those already described. Thienobenzothiazepinones (125) of this class⁹⁹ were obtained by cyclization of the diaryl sulfide, 126, in

$$\begin{array}{c}
OCN \\
S \\
126
\end{array}$$

$$\begin{array}{c}
OCN \\
S \\
125
\end{array}$$

tetrachloroethane at -10° to -5° in the presence of anhydrous aluminium trichloride during 24 hour period. Derivatives of these thienobenzothiazepines also have sedative, 98 analgesic 98 and antiinflammatory activities. 98

19 PYRAZOLOBENZOTHIAZEPINES

Further variation of the dibenzothiazepine ring involves the replacement of one of the benzene rings with pyrazole leading to pyrazolobenzothiazepines (127). This was accomplished by Ullmann reaction of 4-bromo-3-(2-formamidophenyl)thiomethyl-2-methyl-1-phenyl-3-pyrazolin-5-one (128) in a nonpolar solvent such as xylene. In an aprotic polar solvent such as dimethyl-formamide, the thiazepine ring was not formed. Instead, 3-(3-formylbenzothiazol-2-yl)-2-methyl-1-phenyl-3-pyrazolin-5-one (132) was obtained in 62% yield.

In a method for the synthesis of the isomeric ring system, a suspension of the phenylpyridazinyl sulfide, 129, was heated for several hours. Ring contration led to the phenylpyrazolyl sulfide 130 which cyclized to the desired isomeric pyrazolobenzothiazepine product 131 on treatment with thionyl chloride in chloroform. 101

Derivatives of the pyrazolobenzothiazine system (131) showed psychotropic activity in laboratory animals.¹⁰²

20 INDOLOBENZOTHIAZEPINE

During a study of triethyl phosphite-promoted deoxygenation of indolyl o-nitrophenyl sulfides, it was found by Jackson, Johnston and Shannon⁶⁰ that the diaryl sulfide 79 was converted to 7-methyl-dihydroindolodihydrobenzothiazepine (80) in 34% yield. This product was converted to the indoloquinoline (81) on heating above its melting point.

21 DIBENZOTHIAAZOCINES

Further modifications of the central thiazine ring in phenothiazine leading to dibenzothiaazocines have also been made. ¹⁰³ In the typical reaction, α,α' -dibromo-o-xylene (133) was condensed with 4-substituted-2-

137

amino-thiophenols (134) and gave a 50% yield of 6,11-dihydro-2-substituted-12H-dibenzo [b,f] [1,4] thiazocine (135). Several 2-substituted, N-acyl and N-alkyl derivatives were also prepared. 103-104

In another method, cyclization of the sulfide 138 with thionyl chloride followed by lithium aluminium hydride reduction afforded 6-phenyl-12H-dibenzo-[b,f] [1,4] thiazocine (140)!¹⁰⁵

The isomeric dibenzo [b,g] [1,5] thiazocine (141) derivatives have also been prepared. This was accomplished by reacting o-bromomethylphenyl sulfide (142) with primary amines¹⁰⁶ at 80° in an autoclave for 5 hours. When the reaction mixture was worked-up after the isolation of compound 141, a sixteen membered ring compound, 142, was collected as a by-

$$S \longrightarrow + RNH_2 \longrightarrow + RNH_2$$

$$142$$

$$10 \longrightarrow 10$$

$$9 \longrightarrow 7$$

$$R$$

$$10 \longrightarrow 10$$

$$9 \longrightarrow 7$$

$$R$$

$$10 \longrightarrow 10$$

$$9 \longrightarrow 10$$

$$10 \longrightarrow 10$$

$$1$$

141

product. The formation ratio depended on the reaction condition. Several derivatives of these dibenzothiazocines as well as their 12-dioxides were also reported. 106-115

Pharmacological evaluation of these compounds showed that they are useful as antiinflammatory, ¹⁰⁶ analgesic, ¹⁰⁶ antidepressant ^{106,109–113} agents as well as parkinsonism inhibitors. ¹⁰⁹ The polycyclic thiazocines (142) are antiinflammatory, ¹⁰⁸ antiedema ¹⁰⁸ and psychotropic drugs. ¹⁰⁸

22 BENZOCYCLOHEPTA[e] [1,4] THIAZINES

Further variation of the phenothiazine structure was achieved by ring expansion of one of the benzene rings. 2-Substituted-5a,6,7,8,9,10,10a,11-octahydrobenzo[b]-cyclohepta[e] [1,4] thiazines (143) were obtained by condensing (o-aminophenyl)disulfides 144 with 2-bromocycloheptanone (145). A number of derivatives were also prepared and their biological properties were studied. These compounds proved to be CNS depressants 116 and weak antihistamines. 116

ACKNOWLEDGMENT

The author wishes to express his appreciation to Mr. J. O. Ugboaja for his assistance in the preparation of this manuscript and to Messrs F. I. Ozoh, F. U. Ekezie and H. C. Ezenwa of these Laboratories for their technical assistance.

REFERENCES

- 1. A. Bernthsen, Ber. Deut. Chem. Ges. 16, 2896 (1883).
- 2. K. Venkataraman, The Chemistry of Synthetic Dyes, Vol. II (Acad. Press, New York, 1952) p. 791.
- P. Rys and H. Zollinger, Fundamentals of the Chemistry and Applications of Dyes (Wiley-Interscience, London, 1972) Ch. 9., 110-113.
- 4. N. L. Smith, J. Org. Chem. 16, 415 (1951).
- C. M. Murphy and C. E. Saunders, *Petroleum Refiner*, 26, 479 (1947).
- 6. H. L. West, J. Inst. Petroleum, 34, 774 (1948).
- (a) C. L. Zirkle and C. Kaiser in Psychopharmacological Agents, Vol. III, M. Gordon, Ed. (Academic Press, New York, 1974) p. 39; (b) M. Gordon, P. N. Craig and C. L. Zirkle, Molecular Modification in Drug Design, R. F. Gould, Ed. (American Chemical Society, Washington, D.C., 1964) pp. 140-147.
- (a) Roussel-UCLAF, French Demande 2,242,107 (28th March 1975);
 (b) D. G. Friend and J. F. Cummins, J. Amer. Med. Assoc. 153, 480 (1953).
- (a) Rhone-Poulenc (P. Charpentier), U.S. Patent 2,530,451 (Nov. 21, 1950); (b) W. A. Bain, F. F. Hellier and R. P. Warin, *Lancet*, 255, 964 (1948).
- (a) D. Bovet, P. Durel and V. Longo, Compt. Rend. Soc. Biol. 144, 514 (1950); (b) A. Burger, Medicinal Chemistry, 2nd ed. (Interscience Publishers, New York, N.Y., 1960) pp. 504-508.
- 11. (a) Rhone-Poulenc (P. Charpentier), U.S. Patent 2,526,118 (Oct. 17, 1950).
- (a) Y. H. Wu and W. G. Lobeck Jr. (Mead Johnson & Co.)
 U.S. Patent 3,946,004 (23rd March, 1976).
- (a) Bristol-Myers Co., Japan Kokai, 74, 95,984 (11th September, 1974); (b) Y. H. Wu and W. G. Lobeck (Bristol-Myers Co.), German Offen 2,302,178 (25th July, 1974); (c) Bristol-Myers Co., Netherland Applied, 73, 00569 (July, 17, 1974).
- 14. P. Stoss, G. Satzinger and M. Herrmann, German Offen, 2,417,063 (30th October, 1975).
- (a) Institute of Org. Chem., Acad. of Sciences S.S.R., Japan Kokai, 95,983 (11th September, 1974); (b) P. D. Harwood, A. C. Jerstad and L. E. Swanson, J. Parasitol. 24, 16 (1938); (c) A. S. Selivanova, Zh. V. Molodykh and B. V. Kudryavtsev, Uch. Zap. Kazan Vet. Inst. 112, 223 (1972).
- (a) K. H. Risse, U. Hoerlein and W. Wirth (Bayer A-G),
 U.S. Patent 3,885,034 (20th May, 1975);
 (b) M. Gordon in *Medicinal Chemistry*, A. Burger, Ed., 2nd ed., (Interscience Publishers, New York, 1960) Ch. 18, pp. 397-418.
- 17. (a) J. L. Archibald (Wyeth, John and Brother Ltd.), British Patent 1,425,710 (18th February, 1976); (b) J. R. Dahlbom

- and T. K. I. B. Ekstrand, U.S. Patent 2,615,886 (Oct. 28, 1952); (c) R. Dahlbom and T. Ekstrand, Arch. intern. pharmaco-dynamie, 40, 241 (1952); (d) J. D. Genzer, M. N. Lewis, F. H. McMillan and J. A. King, J. Amer. Chem. Soc. 75, 2506 (1953).
- F. L. Campbell, W. N. Sullivan, L. E. Smith and H. L. Haller, J. Econ. Entomol. 27, 1176 (1934).
- 19. S. P. Massie, Chem. Rev. 54, 791 (1954).
- E. von Schenker and H. Herbst, Progress in Drug Research, Vol. 5, E. Jucker, Ed., Birkhauser Verlag, Basel, 1963, pp. 269-627.
- C. Bodea and I. Silberg in Advances in Heterocyclic Chemistry, Vol. 9, A. R. Katritzky and A. J. Boulton, Eds. (Academic Press Inc, New York, N.Y., 1968) pp. 321-460.
- C. O. Okafor, Int. J. Sulfur Chem. B, 6, 237 (1971).
 (a) C. O. Okafor, Int. J. Sulfur Chem. B, 7, 109 (1972);
 (b) C. J. Grol and J. S. Faber, Rec. Trav. Chim. Pays-Bas, 89, 68 (1970);
 (c) C. J. Grol, J. Heterocyclic Chem. 11, 953 (1974);
 (d) C. J. Grol and H. Rollema, J. Med. Chem., 18, 857 (1975);
 (e) C. J. Grol, J.C.S. Perk in I, 1234 (1975);
 (f) V. I. Shvedov, O. B. Romanova, V. K. Vasil'eva, V. P. Pakhomov and A. N. Grinev, Khim Geterotsikl Soedin. 741 (1973) [Chem. Abstr., 79, 92135c (1973)],
 (g) V. I. Shvedov, O. B. Romanova,
- St. Hift and K. Kryspin-Exner, Wien. Med. Wochenschr. 108, 664 (1958).

V. K. Vasil'eva, A. N. Grinev, U.S.S.R. Patent 385,969

(14th June, 1973). [Chem. Abstr., 79, 92251q (1973)].

- J. Quandt, L. von Horn and H. Schliep, Psychiat. et Neurol. 135, 197 (1958).
- 26. J. Druey, Angew Chem. 70, 5 (1958).
- 27. Y. Nitta, F. Yoneda and T. Otaka, Japanese Patent 27,669 (December 27, 1967).
- A. Westerman, O. Bub and L. Suranyi, German Patent 1,110,651 (1958).
- Dow Chem. Co. (Y. C. Tong), U.S. Patent 3,821,213 (28 June, 1974).
- Dow Chem. Co. (Y. C. Tong), U.S. Patent 3,845,044 (29 October, 1974).
- B. Camerino and G. Palamidessi, Gazz. Chim. Ital. 90, 1815 (1960).
- G. Palamidessi and L. Benardi, Gazz. Chim. Ital. 91, 1438 (1961).
- 33. C. O. Okafor, Phosphorus and Sulfur, 1, 323 (1976).
- T. S. Safonova, M. P. Nemeryuk, L. A. Myshkina, O. L. Aparnikova and N. I. Traven (All-Union Sci. Res. Chem. Pharm. Inst.), U.S.S.R. Patent 430,642 (25 July, 1975).
- V. Carelli, P. Marchini, G. Liso, F. Micheletti-Moracci, M. Cardellini, F. Liberatore and M. G. Lucarelli, Int. J. Sulfur Chem. A, 1, 251 (1971).
- A. I. Kiprianov and V. A. Portnyagina, Zh. Obshch. Khim. 25, 2257 (1955). [Chem. Abstr. 50, 9378b (1956)].
- V. Carelli, P. Marchini, M. Cardellini, F. Micheletti-Moracci, G. Liso and M. G. Lucarelli, *Tetrah. Letters*, 4619 (1969).
- 38. V. Carelli, P. Marchini, M. Cardellini, F. Micheletti-Moracci, G. Liso and M. G. Lucarelli, *Ann. Chem. (Rome)*, 59, 1050 (1969).
- E. L. Patmore and H. Chafetz, J. Org. Chem., 32, 1254 (1967).
- O. Hromatka, J. Augl, M. Vaculny and H. Petrousek, *Monatsh. Chem.* 89, 517 (1958) [Chem. Abstr., 53, 11386c (1959)].
- 41. C. O. Okafor, J. Org. Chem. 38, 4386 (1973).

- 42. C. O. Okafor, J. Org. Chem. 38, 4383 (1973).
- A. P. Phillips, N. B. Mehta and J. Z. Strelitz, J. Org. Chem. 28, 1488 (1963).
- C. O. Okafor, M. L. Steenberg and J. P. Buckley, European J. Med. Chem. 12, 249 (1977).
- K. Kaji, H. Nagashima, Y. Masaki, M. Yoshida and K. Kamiya, Japan Kokai 74, 48,697 (1974).
- K. Kaji, H. Nagashima, Y. Masaki, M. Yoshida and K. Kamiya, Japan Kokai 74, 48,698 (1974).
- K. Kaji, H. Nagashima, Y. Masaki, M. Yoshida and K. Kamiya, Japan Kokai 74, 48,699 (1974).
- 48. C. O. Okafor, J. Heterocyclic Chem. 12, 813 (1975).
- 49. H. P. Kaufmann, Chem. Ber. 62B, 390 (1929).
- 50. C. O. Okafor, J. Org. Chem. 40, 2753 (1975).
- D. S. Wise, Jr. and R. N. Castle, J. Heterocyclic Chem. 11, 1001 (1974).
- T. Kuraishi and R. N. Castle, J. Heterocyclic Chem. 1, 42 (1964).
- R. H. Mizzoni and P. E. Spoerri, J. Amer. Chem. Soc. 76, 2201 (1954).
- 54. T. Kuraishi, Chem. Pharm. Bull (Tokyo), 4, 137 (1956).
- T. Itai and S. Kamiya, Chem. Pharm. Bull. (Tokyo), 11, 1059 (1963).
- 56. T. Kuraishi, Chem. Pharm. Bull. (Tokyo), 6, 331 (1958).
- 57. R. N. Castle and W. S. Seese, J. Org. Chem. 23, 1534 (1958).
- W. R. Benson and A. E. Pohland, J. Org. Chem. 29, 385 (1964).
- M. Yanai and T. Kinoshita, Yakugaku Zasshi, 85, 344 (1965).
- A. J. Jackson, D. N. Johnston and P. V. R. Shannon, J.C.S. Chem. Comm. 911 (1975).
- 61. S. J. Holt and V. Petrow, J. Chem. Soc. 607 (1947).
- 62. R. J. Sundberg, *The Chemistry of Indoles* (Academic Press, Inc., New York, N.Y. 1970), p. 282.
- 63. P. Charpentier, P. Gailliot, R. M. Jacob, J. Gaudechon and P. Buisson, *Compt. rend.* 235, 59 (1952).
- Y. Maki, M. Suzuki, O. Toyota and M. Takaya, Chem. Pharm. Bull. (Tokyo), 21, 241 (1973).
- Pharm. Bull. (10ky0), 21, 241 (1973).
 Y. Maki and M. Suzuki, Japan Kokai 73, 91,096 (27 November, 1973), [Chem. Abstr. 81,3953 w (1974)].
- 66. O. Aki, Y. Nakagawa and K. Sirakawa, J. Takeda Res. Lab. (Japan), 31, 159 (1972).
- 67. M. Nakanishi, T. Munekata, T. Tsumagari and N. Setoguchi Japanese Patent 72, 34,718 (1st September, 1972).
- M. Nakanishi, T. Munakata, T. Tsumaga and N. Setoguchi, Japanese Patent 73, 10,160 (31st March, 1973).
- 69. P. Catsoulacos, Bull. Soc. Chim. Fr. 6, 2136 (1973).
- C. F. Howell, P. Ramirez and R. A. Hardy, Jr, (American Cyanamide Co.) French Patent 1,602,883 (19 March, 1971).
- J. Schmutz, F. Hunziker and F. M. Kuenzle (Wander A-G) German Offen 2,259,568 (14th June, 1973).
- 72. J. B. Hester, Jr. and J. Szmuszkovicz (Upjohn Pharm-Co.), German Offen 2,306,762 (30th August, 1973).
- W. J. Van der Burg (AKZO N.V.), German Offen 2,311,019 (20th September, 1973).
- J. Schmutz, F. Hunziker and E. Fischer (Wander Dr. A. A-G) South African Patent 06,668 (5 October, 1971).
- J. Schmutz, F. Hunziker and F. M. Kuenzle, Fr. Demande 2,162,575 (24th August, 1973).
- J. Schneider (Wander A.G), German Offen 2,316,438 (11th October, 1973).
- 77. M. Nakanishi, T. Munakata, H. Maruyama and N. Setoguchi (Yoshitomi Pharm. Ind. Ltd.), Japanese Patent 73, 35, 272 (26th October, 1973).

- M. Nakanishi, T. Munakata, H. Maruyama and N. Setoguchi, Japanese Patent 73, 43,512 (19th December, 1973).
- H. L. Yale and R. B. Petigara (Squibb F. R. & Sons Inc.).
 U.S. Patent 3,813,396 (28th May, 1974).
- M. Nakanishi, H. Yugi, A. Nakanishi and Y. Takigawa (Yoshitomi Pharm. Ind. Ltd.), Japanese Patent 71, 43,786 (25th December, 1971).
- M. Nakanishi and T. Oe, Japanese Patent 72, 30,715 (9th August, 1972).
- 82. C. F. Malen, M. Desnos and J. C. Poignant (Science Union et Cie-Societe Francaise de Recherche Medicale), German Offen 2,030,714 (4th February, 1971).
- 83. H. L. Yale and R. Petigara [Squibb Inst. for Med. Res, New Brunswick N.J]. German Offen 2,153,589 (May 4, 1972).
- H. L. Yale and R. B. Petigara (Squibb Inst. for Med. Res).
 U.S. Patent 3,793,345 (19 February, 1974).
- H. L. Yale and J. Bernstein (Squibb E. R. & Sons) U.S. Patent 3,780,059 (18th December, 1973).
- 86. I. Ueda, Japan Kokai 75, 151,883 (6th December, 1975).
- 87. I. Ueda, Japan Kokai 75, 151,889 (6th December, 1975).
- 88. H. L. Yale and J. Bernstein, U.S. Patent 3,796,725 (12th March, 1974).
- H. L. Yale and J. Bernstein (Squibb E. R. and Sons. Inc.),
 U.S. Patent 3,723,463 (27th March, 1973).
- H. L. Yale and J. Pluscec (Squibb E. R. & Sons Inc.).
 German Offen 2,029,497 (28th January, 1971).
- 91. SERDEX, French Demande 2,150,807 (18th May, 1973).
- 92. A. Attar, H. Wamhoff and F. Korte, *Chem. Ber.* 106, 3524 (1973).
- M. Nakanishi, T. Munakata, S. Setoguchi and S. Fukunari (Yoshitomi Pharm Ind. Ltd). German Offen 2,123,784 (2nd December, 1971).
- M. Nakanishi, T. Munakata, S. Setoguchi and S. Fukunari (Yoshitomi Pharm. Ind. Ltd), Japan Kokai 73, 52,798 (24th July, 1973).
- M. Nakanishi, T. Munakata, S. Setoguchi and S. Fukunari (Yoshitomi Pharm. Ind. Ltd.), Japan Kokai 73, 14,697 (23rd February, 1973).
- M. Nakanishi, T. Munakata, H. Matsuo and T. Fukunari, (Yoshitomi Pharm. Ind. Ltd) Japanese Patent 04,230 (31st January, 1974).
- 97. M. Nakanishi, T. Munakata, N. Setoguchi and T. Fukunari, Japanese Patent 74, 04,472 (1st February, 1974).
- 98. M. Nakanishi, T. Munakata, N. Setoguchi and T. Fukunari, Japanese Patent 74, 04,473 (1st February, 1974).
- T. Munakata, N. Setoguchi and T. Fukunari (Yoshitomi Pharm. Ind. Ltd.) Japanese Patent 74, 04,471 (1st February, 1974).
- 100. I. Ito and T. Ueda, Yakugaku Zasshi, 93, 207 (1973).
- Y. Maki, M. Suzuki and M. Takaya, Chem. Pharm. Bull. (Tokyo), 22, 229 (1974).
- Y. Maki and M. Suzuki, Japan Kokai, 73, 91,095 (27th November, 1973).
- 103. H. L. Yale, F. Sowinski and E. R. Spitzmiller, J. Heterocyclic Chem. 9, 899 (1972).
- 104. H. L. Yale and J. Bernstein (Squibb E. R. & Sons Inc). German Offen 2,107,669 (31st August, 1972).
- 105. G. Seidl (Farbwerke Hoeschst A-G) German Patent 1,545,806 (31st October, 1973).
- S. Tanaka and K. Hashimoto (Eisai Co. Ltd) Japanese Patent 71, 41,552 (8th December, 1971).
- 107. S. Tanaka, K. Hashimoto and H. Watanabe, Yakugaku Zasshi, 93, 991 (1973).

Downloaded At: 15:04 30 January 2011

- 108. S. Tanaka, K. Hashimoto and H. Watanabe (Eisai Co. Ltd), Japan Kokai 73, 52,789 (24th July, 1973).
- 109. S. Tanaka and H. Watanabe (Eisai Co. Ltd). German Offen 2,246,707 (12th April, 1973).
- 110. S. Tanaka and K. Hashimoto, (Eisai Co. Ltd), Japanese Patent 73, 11,108 (10th April, 1973).
- 111. S. Tanaka and H. Watanabe, Japan Kokai **73**, 44,286 (26th June, 1973).
- S. Tanaka and H. Watanabe, Japan Kokai 73, 40793 (15th June, 1973).
- 113. S. Tanaka and H. Watanabe (Eisai Co. Ltd), Japan Kokai 73, 44,287 (26th June, 1973).
- S. Tanaka, H. Watanabe and Y. Ogata, Yakugaku Zasshi, 93, 997 (1973).
- 115. H. L. Yale and J. Bernstein, British Patent 1,343,922 (16th January, 1974).
- 116. M. Cardellini, F. Claudi, U. Gulini, M. Micheletti, F. Moracci, G. De Caro and F. Venturi, Eur. J. Med. Chem. Chim. Ther. 9, 513 (1974).